TRADE-OFFS IN FIRE MANAGEMENT BETWEEN PEOPLE AND AVIAN BIODIVERSITY

Alina Pung^{1,2}

Supervisors: Professor Mick McCarthy¹, Dr. Luke Kelly¹, Dr. Karen Rowe²

¹University of Melbourne, ²Museum Victoria Email: apung@student.unimelb.edu.au

INTRODUCTION

The primary aim of fuel reduction burning is to reduce the risk of future wildfires to human life and assets (Penman *et al.* 2011).

However, short fire intervals and broad-scale burning presents a major threat to biodiversity (Gill and Bradstock 1995). These trade-offs between human and ecological objectives must be considered for effective fire management.

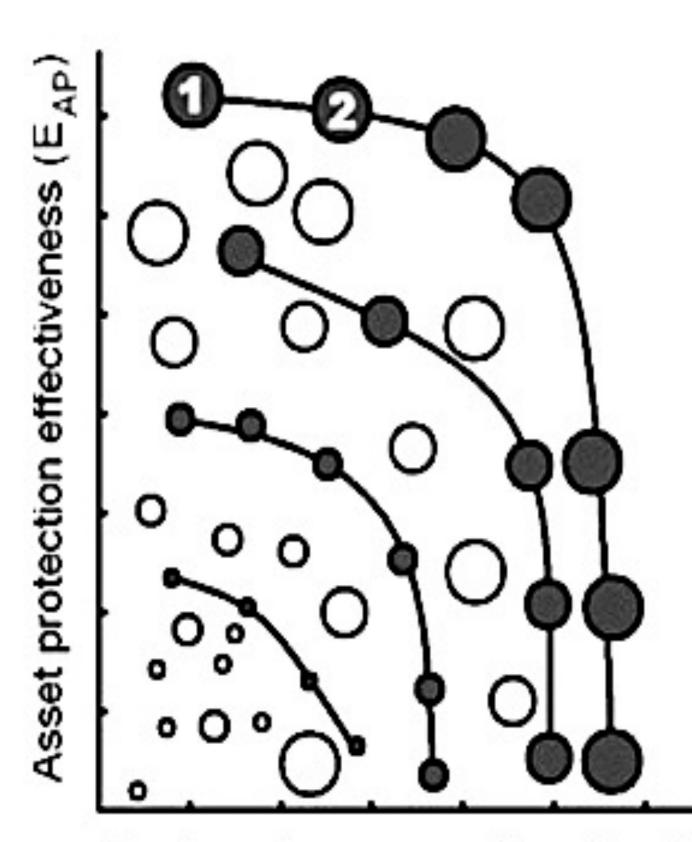


Figure 1. A hypothetical trade-off graph between biodiversity conservation (E_B) and assetprotection (E_{AP}) effectiveness achieved by a particular suite of management interventions.

The biodiversity outcome can be substantially improved with only a small reduction in asset protection by choosing management suite 2 over suite 1. (Driscoll *et al.* 2010)

Biodiversity conservation effectiveness (E_B)

PROJECT AIM

To model and evaluate the trade-offs in fire management between avian biodiversity and risk to human life and property across a range of fuel reduction targets.

HYPOTHESIS

1. Lower fuel reduction targets will favour avian biodiversity

The geometric mean of bird species relative abundance will have a positive relationship with increasing time since fire.

2. Higher fuel reduction targets will provide greater protection to people and property

The risk of house loss during a wildfire will have a positive relationship with available fuel (surrounding vegetation) within a given area.

APPROACH

Evaluation of existing data sets

Long-term fire history and bird survey data is available from the Foothills Fire and Biota Project.

Developing a trade-off model

Quantify the trade-offs in fire management between people and biodiversity across a range of fuel reduction targets.

Testing the model

Fieldwork will involve conducting bird and vegetation surveys across a range of post-fire age classes to test the predictions of the model.

FIELDWORK

Bird Surveys

I am using automated recording units to detect the presence of several key fire response bird species within the Victorian Central Highlands.

Positive fire response

- Flame Robin, Petroica phoenicea
- Scarlet Robin, Petroica boodang

Negative fire response

- Eastern Yellow Robin, Eopsaltria australis
- Silvereye, Zosterops lateralis
- Gang-gang Cockatoo, *Callocephalon* fimbriatum

Vegetation Surveys

I will be recording vegetation life form and height across 100m transects to access the habitat structure and fuel load at each site.

Photos: Flame Robin and Eastern Yellow Robin (BirdLife Australia)

